دورية أكاديمية

Numerical investigation of spallation neutrons generated from petawatt-scale laser-driven proton beams

التفاصيل البيبلوغرافية
العنوان: Numerical investigation of spallation neutrons generated from petawatt-scale laser-driven proton beams
المؤلفون: B. Martinez, S. N. Chen, S. Bolaños, N. Blanchot, G. Boutoux, W. Cayzac, C. Courtois, X. Davoine, A. Duval, V. Horny, I. Lantuejoul, L. Le Deroff, P. E. Masson-Laborde, G. Sary, B. Vauzour, R. Smets, L. Gremillet, J. Fuchs
المصدر: Matter and Radiation at Extremes, Vol 7, Iss 2, Pp 024401-024401-10 (2022)
بيانات النشر: AIP Publishing LLC, 2022.
سنة النشر: 2022
المجموعة: LCC:Nuclear and particle physics. Atomic energy. Radioactivity
مصطلحات موضوعية: Nuclear and particle physics. Atomic energy. Radioactivity, QC770-798
الوصف: Laser-driven neutron sources could offer a promising alternative to those based on conventional accelerator technologies in delivering compact beams of high brightness and short duration. We examine this through particle-in-cell and Monte Carlo simulations that model, respectively, the laser acceleration of protons from thin-foil targets and their subsequent conversion into neutrons in secondary lead targets. Laser parameters relevant to the 0.5 PW LMJ-PETAL and 0.6–6 PW Apollon systems are considered. Owing to its high intensity, the 20-fs-duration 0.6 PW Apollon laser is expected to accelerate protons up to above 100 MeV, thereby unlocking efficient neutron generation via spallation reactions. As a result, despite a 30-fold lower pulse energy than the LMJ-PETAL laser, the 0.6 PW Apollon laser should perform comparably well both in terms of neutron yield and flux. Notably, we predict that very compact neutron pulses, of ∼10 ps duration and ∼100 μm spot size, can be released provided the lead convertor target is thin enough (∼100 μm). These sources are characterized by extreme fluxes, of the order of 1023 n cm−2 s−1, and even ten times higher when using the 6 PW Apollon laser. Such values surpass those currently achievable at large-scale accelerator-based neutron sources (∼1016 n cm−2 s−1), or reported from previous laser experiments using low-Z converters (∼1018 n cm−2 s−1). By showing that such laser systems can produce neutron pulses significantly brighter than existing sources, our findings open a path toward attractive novel applications, such as flash neutron radiography and laboratory studies of heavy-ion nucleosynthesis.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2468-080X
Relation: https://doaj.org/toc/2468-080X
DOI: 10.1063/5.0060582
URL الوصول: https://doaj.org/article/9971758826864dcbbdcf8adb50af2c1c
رقم الأكسشن: edsdoj.9971758826864dcbbdcf8adb50af2c1c
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:2468080X
DOI:10.1063/5.0060582