دورية أكاديمية

Entropy Production in Electroosmotic Cilia Facilitated Stream of Thermally Radiated Nanofluid with Ohmic Heating

التفاصيل البيبلوغرافية
العنوان: Entropy Production in Electroosmotic Cilia Facilitated Stream of Thermally Radiated Nanofluid with Ohmic Heating
المؤلفون: Najma Saleem, Sufian Munawar, Ahmer Mehmood, Ibtisam Daqqa
المصدر: Micromachines, Vol 12, Iss 9, p 1004 (2021)
بيانات النشر: MDPI AG, 2021.
سنة النشر: 2021
المجموعة: LCC:Mechanical engineering and machinery
مصطلحات موضوعية: entropy analysis, electroosmotic ciliary flow, thermal radiation, magnetic field, Joule heating, Carreau nanofluid, Mechanical engineering and machinery, TJ1-1570
الوصف: No thermal process, even the biological systems, can escape from the long arms of the second law. All living things preserve entropy since they obtain energy from the nutrition they consume and gain order by producing disorder. The entropy generation in a biological and thermally isolated system is the main subject of current investigation. The aim is to examine the entropy generation during the convective transport of a ciliated nano-liquid in a micro-channel under the effect of a uniform magnetic field. Joint effects of electroosmosis and thermal radiation are also brought into consideration. To attain mathematical simplicity, the governing equations are transformed to wave frame where the inertial parts of the transport equations are dropped with the use of a long-wavelength approximation. This finally produces the governing equations in the form of ordinary differential equations which are solved numerically by a shooting technique. The analysis reports that the cilia motion contributes to enhance the flow and heat transfer phenomena. An enhancement in the flow is observed near the channel surface for higher cilia length and for smaller values of the electroosmotic parameter. The entropy generation in the ciliated channel is observed to be lessened by intensifying the thermal radiation and decreasing the Ohmic heating. The extended and flexible cilia structure contributes to augment the volumetric flow rate and to drop the total entropy generation in the channel.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2072-666X
Relation: https://www.mdpi.com/2072-666X/12/9/1004; https://doaj.org/toc/2072-666X
DOI: 10.3390/mi12091004
URL الوصول: https://doaj.org/article/9ed01bf6b2e74dac93caac199419662f
رقم الأكسشن: edsdoj.9ed01bf6b2e74dac93caac199419662f
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:2072666X
DOI:10.3390/mi12091004