دورية أكاديمية

Activation of a passive, mesoporous silica nanoparticle layer through attachment of bacterially-derived carbon-quantum-dots for protection and functional enhancement of probiotics

التفاصيل البيبلوغرافية
العنوان: Activation of a passive, mesoporous silica nanoparticle layer through attachment of bacterially-derived carbon-quantum-dots for protection and functional enhancement of probiotics
المؤلفون: Hao Wei, Wei Geng, Xiao-Yu Yang, Jeroen Kuipers, Henny C. van der Mei, Henk J. Busscher
المصدر: Materials Today Bio, Vol 15, Iss , Pp 100293- (2022)
بيانات النشر: Elsevier, 2022.
سنة النشر: 2022
المجموعة: LCC:Medicine (General)
LCC:Biology (General)
مصطلحات موضوعية: Infection, Boron hydroxyl chemistry, Mesoporous nanoparticles, Probiotics, Food supplementation, Medicine (General), R5-920, Biology (General), QH301-705.5
الوصف: Probiotic bacteria employed for food supplementation or probiotic-assisted antibiotic treatment suffer from passage through the acidic gastro-intestinal tract and unintended killing by antibiotics. Carbon-quantum-dots (CQDs) derived from bacteria can inherit different chemical groups and associated functionalities from their source bacteria. In order to yield simultaneous, passive protection and enhanced, active functionality, we attached CQDs pyrolytically carbonized at 220 ​°C from Lactobacillus acidophilus or Escherichia coli to a probiotic strain (Bifidobacterium infantis) using boron hydroxyl-modified, mesoporous silica nanoparticles as an intermediate encapsulating layer. Fourier-transform-infrared-spectroscopy, X-ray-photoelectron-spectroscopy and scanning-electron-microscopy were employed to demonstrate successful encapsulation of B. infantis by silica nanoparticles and subsequent attachment of bacterially-derived CQDs. Thus encapsulated B. infantis possessed a negative surface charge and survived exposure to simulated gastric fluid and antibiotics better than unencapsulated B. infantis. During B. infantis assisted antibiotic treatment of intestinal epithelial layers colonized by E. coli, encapsulated B. infantis adhered and survived in higher numbers on epithelial layers than B. infantis without encapsulation or encapsulated with only silica nanoparticles. Moreover, higher E. coli killing due to increased reactive-oxygen-species generation was observed. In conclusion, the active, protective encapsulation described enhanced the probiotic functionality of B. infantis, which might be considered as a first step towards a fully engineered, probiotic nanoparticle.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2590-0064
Relation: http://www.sciencedirect.com/science/article/pii/S2590006422000916; https://doaj.org/toc/2590-0064
DOI: 10.1016/j.mtbio.2022.100293
URL الوصول: https://doaj.org/article/b114c505cd934f60b945278a6b66cc9d
رقم الأكسشن: edsdoj.b114c505cd934f60b945278a6b66cc9d
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:25900064
DOI:10.1016/j.mtbio.2022.100293