دورية أكاديمية

Fabrication and characterization of graphene oxide-based polymer nanocomposite coatings, improved stability and hydrophobicity

التفاصيل البيبلوغرافية
العنوان: Fabrication and characterization of graphene oxide-based polymer nanocomposite coatings, improved stability and hydrophobicity
المؤلفون: Sachin Sharma Ashok Kumar, Nujud Badawi M., Khalid Mujasam Batoo, I. A. Wonnie Ma, K. Ramesh, S. Ramesh, Mohd Asif Shah
المصدر: Scientific Reports, Vol 13, Iss 1, Pp 1-14 (2023)
بيانات النشر: Nature Portfolio, 2023.
سنة النشر: 2023
المجموعة: LCC:Medicine
LCC:Science
مصطلحات موضوعية: Medicine, Science
الوصف: Abstract In this study, acrylic-epoxy-based nanocomposite coatings loaded with different concentrations (0.5–3 wt.%) of graphene oxide (GO) nanoparticles were successfully prepared via the solution intercalation approach. The thermogravimetric analysis (TGA) revealed that the inclusion of GO nanoparticles into the polymer matrix increased the thermal stability of the coatings. The degree of transparency evaluated by the ultraviolet–visible (UV–Vis) spectroscopy showed that the lowest loading rate of GO (0.5 wt.%) had completely blocked the incoming irradiation, thus resulting in zero percent transmittance. Furthermore, the water contact angle (WCA) measurements revealed that the incorporation of GO nanoparticles and PDMS into the polymer matrix had remarkably enhanced the surface hydrophobicity, exhibiting the highest WCA of 87.55º. In addition, the cross-hatch test (CHT) showed that all the hybrid coatings exhibited excellent surface adhesion behaviour, receiving 4B and 5B ratings respectively. Moreover, the field emission scanning electron microscopy (FESEM) micrographs confirmed that the presence of the functional groups on the GO surface facilitated the chemical functionalization process, which led to excellent dispersibility. The GO composition up to 2 wt.% showed excellent dispersion and uniform distribution of the GO nanoparticles within the polymer matrix. Therefore, the unique features of graphene and its derivatives have emerged as a new class of nanofillers/inhibitors for corrosion protection applications.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2045-2322
Relation: https://doaj.org/toc/2045-2322
DOI: 10.1038/s41598-023-35154-z
URL الوصول: https://doaj.org/article/b252034310fb44e7ac9715257a2d7ef4
رقم الأكسشن: edsdoj.b252034310fb44e7ac9715257a2d7ef4
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20452322
DOI:10.1038/s41598-023-35154-z