دورية أكاديمية

Low UV-C stress modulates Chlamydomonas reinhardtii biomass composition and oxidative stress response through proteomic and metabolomic changes involving novel signalers and effectors

التفاصيل البيبلوغرافية
العنوان: Low UV-C stress modulates Chlamydomonas reinhardtii biomass composition and oxidative stress response through proteomic and metabolomic changes involving novel signalers and effectors
المؤلفون: Francisco Colina, María Carbó, Mónica Meijón, María Jesús Cañal, Luis Valledor
المصدر: Biotechnology for Biofuels, Vol 13, Iss 1, Pp 1-19 (2020)
بيانات النشر: BMC, 2020.
سنة النشر: 2020
المجموعة: LCC:Fuel
LCC:Biotechnology
مصطلحات موضوعية: Chlamydomonas, UV-C, Biomass, ROS, Sugars, Metabolomics, Fuel, TP315-360, Biotechnology, TP248.13-248.65
الوصف: Abstract Background The exposure of microalgae and plants to low UV-C radiation dosages can improve their biomass composition and stress tolerance. Despite UV-C sharing these effects with UV-A/B but at much lower dosages, UV-C sensing and signal mechanisms are still mostly unknown. Thus, we have described and integrated the proteometabolomic and physiological changes occurring in Chlamydomonas reinhardtii—a simple Plantae model—into the first 24 h after a short and low-intensity UV-C irradiation in order to reconstruct the microalgae response system to this stress. Results The microalgae response was characterized by increased redox homeostasis, ROS scavenging and protein damage repair/avoidance elements. These processes were upregulated along with others related to the modulation of photosynthetic electron flux, carbon fixation and C/N metabolism. These changes, attributed to either direct UV-C-, ROS- or redox unbalances-associated damage, trigger a response process involving novel signaling intermediaries and effectors such as the translation modulator FAP204, a PP2A-like protein and a novel DYRK kinase. These elements were found linked to the modulation of Chlamydomonas biomass composition (starch accumulation) and proliferation, within an UV-C response probably modulated by different epigenetic factors. Conclusion Chosen multiomics integration approach was able to describe many fast changes, including biomass composition and ROS stress tolerance, as a response to a low-intensity UV-C stress. Moreover, the employed omics and systems biology approach placed many previously unidentified protein and metabolites at the center of these changes. These elements would be promising targets for the characterization of this stress response in microalgae and plants and the engineering of more productive microalgae strains.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1754-6834
Relation: http://link.springer.com/article/10.1186/s13068-020-01750-8; https://doaj.org/toc/1754-6834
DOI: 10.1186/s13068-020-01750-8
URL الوصول: https://doaj.org/article/ab294abea51546d9aed3c0adb52e08f7
رقم الأكسشن: edsdoj.b294abea51546d9aed3c0adb52e08f7
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:17546834
DOI:10.1186/s13068-020-01750-8