دورية أكاديمية

Biodegradation of porous calcium phosphate scaffolds in an ectopic bone formation model studied by X-ray computed microtomograph

التفاصيل البيبلوغرافية
العنوان: Biodegradation of porous calcium phosphate scaffolds in an ectopic bone formation model studied by X-ray computed microtomograph
المؤلفون: VS Komlev, M Mastrogiacomo, RC Pereira, F Peyrin, F Rustichelli, R Cancedda
المصدر: European Cells & Materials, Vol 19, Pp 136-146 (2010)
بيانات النشر: Forum Multimedia Publishing LLC, 2010.
سنة النشر: 2010
المجموعة: LCC:Diseases of the musculoskeletal system
LCC:Orthopedic surgery
مصطلحات موضوعية: Biodegradation, porous calcium phosphate scaffolds, X-ray computed microtomography, registration., Diseases of the musculoskeletal system, RC925-935, Orthopedic surgery, RD701-811
الوصف: Three types of ceramic scaffolds with different composition and structure [namely synthetic 100% hydroxyapatite (HA; Engipore), synthetic calcium phosphate multiphase biomaterial containing 67% silicon stabilized tricalcium phosphate (Si-TCP; Skelite™) and natural bone mineral derived scaffolds (Bio-oss®)] were seeded with mesenchymal stem cells (MSC) and ectopically implanted for 8 and 16 weeks in immunodeficient mice. X-ray synchrotron radiation microtomography was used to derive 3D structural information on the same scaffolds both before and after implantation. Meaningful images and morphometric parameters such as scaffold and bone volume fraction, mean thickness and thickness distribution of the different phases as a function of the implantation time, were obtained. The used imaging algorithms allowed a direct comparison and registration of the 3D structure before and after implantation of the same sub-volume of a given scaffold. In this way it was possible to directly monitor the tissue engineered bone growth and the complete or partial degradation of the scaffold.Further, the detailed kinetics studies on Skelite™ scaffolds implanted for different length of times from 3 days to 24 weeks, revealed in the X-ray absorption histograms two separate peaks associated to HA and TCP. It was therefore possible to observe that the progressive degradation of the Skelite™ scaffolds was mainly due to the resorption of TCP. The different saturation times in the tissue engineered bone growth and in the TCP resorption confirmed that the bone growth was not limited the scaffold regions that were resorbed but continued in the inward direction with respect to the pore surface.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1473-2262
Relation: http://www.ecmjournal.org/journal/papers/vol019/pdf/v019a14.pdf; https://doaj.org/toc/1473-2262
URL الوصول: https://doaj.org/article/b437d7ceef1144a59b4f6422d900ad2c
رقم الأكسشن: edsdoj.b437d7ceef1144a59b4f6422d900ad2c
قاعدة البيانات: Directory of Open Access Journals