دورية أكاديمية

Development of foam concrete with nitrogen oxides removal capability using various forms of titanium dioxide

التفاصيل البيبلوغرافية
العنوان: Development of foam concrete with nitrogen oxides removal capability using various forms of titanium dioxide
المؤلفون: Jung-Jun Park, Jong-Won Kwark, Kwang Bok Yi, Jong Kyu Kim, Doo-Yeol Yoo
المصدر: Case Studies in Construction Materials, Vol 19, Iss , Pp e02602- (2023)
بيانات النشر: Elsevier, 2023.
سنة النشر: 2023
المجموعة: LCC:Materials of engineering and construction. Mechanics of materials
مصطلحات موضوعية: Foam concrete, Titanium dioxide, Mayenite, Nitrogen oxides removal, Mechanical property, Porosity, Materials of engineering and construction. Mechanics of materials, TA401-492
الوصف: Air quality in Seoul is significantly worse than in major OECD countries, with 1.2–3.5 times higher levels of fine dust and nitrogen dioxide. Photocatalytic reaction with Ca-bound catalyst efficiently removes nitrogen oxides (NOx), especially in building materials, promising solutions for NOx removal in urban air purification. This study therefore investigates the effect of various forms of titanium dioxide (TiO2) on the mechanical properties and NOx removal capability of foam concrete. To produce foam concrete, the type and amount of air foaming agent were optimized. Two types of commercially available TiO2 (P25 and NP600) were incorporated into the foam concrete, alongside synthesized TiO2-mayenite (as an intermixing powder or a coating material). Test results indicated that the incorporation of P25 and NP600 led to increased compressive strength and decreased porosity. The strength increased and porosity decreased, as the amount of TiO2 powders was increased. P25 outperformed NP600 in terms of the NOx removal capacity of foam concrete, with the peak NOx removal capacity (6.07 μmol/50 cm2·5 h) observed at a P25 content of 3%. An even higher NOx removal amount of 6.19 μmol/50 cm2·5 h was achieved by triple-coating the foam concrete surface with 10 wt% TiO2-mayenite. Considering the thickness of the coated TiO2-mayenite and economic feasibility, an approach with dual-coating emerged as the most suitable.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2214-5095
Relation: http://www.sciencedirect.com/science/article/pii/S2214509523007829; https://doaj.org/toc/2214-5095
DOI: 10.1016/j.cscm.2023.e02602
URL الوصول: https://doaj.org/article/b4648e49fb2e473fa132522c102cca9e
رقم الأكسشن: edsdoj.b4648e49fb2e473fa132522c102cca9e
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:22145095
DOI:10.1016/j.cscm.2023.e02602