دورية أكاديمية

The genomic diversification of grapevine clones

التفاصيل البيبلوغرافية
العنوان: The genomic diversification of grapevine clones
المؤلفون: Amanda M. Vondras, Andrea Minio, Barbara Blanco-Ulate, Rosa Figueroa-Balderas, Michael A. Penn, Yongfeng Zhou, Danelle Seymour, Zirou Ye, Dingren Liang, Lucero K. Espinoza, Michael M. Anderson, M. Andrew Walker, Brandon Gaut, Dario Cantu
المصدر: BMC Genomics, Vol 20, Iss 1, Pp 1-19 (2019)
بيانات النشر: BMC, 2019.
سنة النشر: 2019
المجموعة: LCC:Biotechnology
LCC:Genetics
مصطلحات موضوعية: Clonal propagation, DNA methylation, Genome diversification, Somatic mutations, Structural variation, Transposable elements, Biotechnology, TP248.13-248.65, Genetics, QH426-470
الوصف: Abstract Background Vegetatively propagated clones accumulate somatic mutations. The purpose of this study was to better appreciate clone diversity and involved defining the nature of somatic mutations throughout the genome. Fifteen Zinfandel winegrape clone genomes were sequenced and compared to one another using a highly contiguous genome reference produced from one of the clones, Zinfandel 03. Results Though most heterozygous variants were shared, somatic mutations accumulated in individual and subsets of clones. Overall, heterozygous mutations were most frequent in intergenic space and more frequent in introns than exons. A significantly larger percentage of CpG, CHG, and CHH sites in repetitive intergenic space experienced transition mutations than in genic and non-repetitive intergenic spaces, likely because of higher levels of methylation in the region and because methylated cytosines often spontaneously deaminate. Of the minority of mutations that occurred in exons, larger proportions of these were putatively deleterious when they occurred in relatively few clones. Conclusions These data support three major conclusions. First, repetitive intergenic space is a major driver of clone genome diversification. Second, clones accumulate putatively deleterious mutations. Third, the data suggest selection against deleterious variants in coding regions or some mechanism by which mutations are less frequent in coding than noncoding regions of the genome.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1471-2164
Relation: https://doaj.org/toc/1471-2164
DOI: 10.1186/s12864-019-6211-2
URL الوصول: https://doaj.org/article/b4a2221db29b4912a6e9b1de04d21f38
رقم الأكسشن: edsdoj.b4a2221db29b4912a6e9b1de04d21f38
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:14712164
DOI:10.1186/s12864-019-6211-2