دورية أكاديمية

Identification of a novel S6K1 inhibitor, rosmarinic acid methyl ester, for treating cisplatin-resistant cervical cancer

التفاصيل البيبلوغرافية
العنوان: Identification of a novel S6K1 inhibitor, rosmarinic acid methyl ester, for treating cisplatin-resistant cervical cancer
المؤلفون: Ki Hong Nam, Sang Ah Yi, Gibeom Nam, Jae Sung Noh, Jong Woo Park, Min Gyu Lee, Jee Hun Park, Hwamok Oh, Jieun Lee, Kang Ro Lee, Hyun-Ju Park, Jaecheol Lee, Jeung-Whan Han
المصدر: BMC Cancer, Vol 19, Iss 1, Pp 1-13 (2019)
بيانات النشر: BMC, 2019.
سنة النشر: 2019
المجموعة: LCC:Neoplasms. Tumors. Oncology. Including cancer and carcinogens
مصطلحات موضوعية: Rosmarinic acid methyl ester, S6K1, Autophagy, Apoptosis, Cervical cancer, Cisplatin resistance, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, RC254-282
الوصف: Abstract Background The mTOR/S6K1 signaling pathway is often activated in cervical cancer, and thus considered a molecular target for cervical cancer therapies. Inhibiting mTOR is cytotoxic to cervical cancer cells and creates a synergistic anti-tumor effect with conventional chemotherapy agents. In this study, we identified a novel S6K1 inhibitor, rosmarinic acid methyl ester (RAME) for the use of therapeutic agent against cervical cancer. Methods Combined structure- and ligand-based virtual screening was employed to identify novel S6K1 inhibitors among the in house natural product library. In vitro kinase assay and immunoblot assay was used to examine the effects of RAME on S6K1 signaling pathway. Lipidation of LC3 and mRNA levels of ATG genes were observed to investigate RAME-mediated autophagy. PARP cleavage, mRNA levels of apoptotic genes, and cell survival was measured to examine RAME-mediated apoptosis. Results RAME was identified as a novel S6K1 inhibitor through the virtual screening. RAME, not rosmarinic acid, effectively reduced mTOR-mediated S6K1 activation and the kinase activity of S6K1 by blocking the interaction between S6K1 and mTOR. Treatment of cervical cancer cells with RAME promoted autophagy and apoptosis, decreasing cell survival rate. Furthermore, we observed that combination treatment with RAME and cisplatin greatly enhanced the anti-tumor effect in cisplatin-resistant cervical cancer cells, which was likely due to mTOR/S6K1 inhibition-mediated autophagy and apoptosis. Conclusions Our findings suggest that inhibition of S6K1 by RAME can induce autophagy and apoptosis in cervical cancer cells, and provide a potential option for cervical cancer treatment, particularly when combined with cisplatin.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1471-2407
Relation: http://link.springer.com/article/10.1186/s12885-019-5997-2; https://doaj.org/toc/1471-2407
DOI: 10.1186/s12885-019-5997-2
URL الوصول: https://doaj.org/article/bac10dabdb2243da8070712d388c21f5
رقم الأكسشن: edsdoj.bac10dabdb2243da8070712d388c21f5
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:14712407
DOI:10.1186/s12885-019-5997-2