دورية أكاديمية

ROCK 1 and 2 affect the spatial architecture of 3D spheroids derived from human corneal stromal fibroblasts in different manners

التفاصيل البيبلوغرافية
العنوان: ROCK 1 and 2 affect the spatial architecture of 3D spheroids derived from human corneal stromal fibroblasts in different manners
المؤلفون: Yosuke Ida, Araya Umetsu, Masato Furuhashi, Megumi Watanabe, Yuri Tsugeno, Soma Suzuki, Fumihito Hikage, Hiroshi Ohguro
المصدر: Scientific Reports, Vol 12, Iss 1, Pp 1-13 (2022)
بيانات النشر: Nature Portfolio, 2022.
سنة النشر: 2022
المجموعة: LCC:Medicine
LCC:Science
مصطلحات موضوعية: Medicine, Science
الوصف: Abstract The objective of the current study was to examine the roles of ROCK1 and 2 on the spatial architecture of human corneal stroma. We examined the effects of a pan-ROCK inhibitor (pan-ROCK-i), ripasudil, and a ROCK2 inhibitor (ROCK2-i), KD025 on the expression of genes that encode for ECM proteins including collagen (COL) 1, 4, 6, and fibronectin (FN), their regulators, a tissue inhibitor of metalloproteinase (TIMP) 1–4, matrix metalloproteinase (MMP) 2, 9 and 14, and ER stress-related factors of two- and three-dimensional (2D and 3D) cultures of human corneal stroma fibroblasts (HCSFs), and the physical properties of 3D HCSF spheroids. A gene expression analysis using ROCK-is indicated that KD025 (ROCK2 selective ROCK inhibitor) induced more significant changes than Rip (ripasudil, pan-ROCK inhibitor), suggesting that ROCK2 might be more extensively involved in the metabolism of ECM proteins and cell architectures of the 2D cultured HCSFs than ROCK1. In terms of the physical properties, size and stiffness of the 3D HCSFs spheroids, Rip caused a significant enlargement and this enhancement was concentration-dependent while KD025 also exerted a similar but less pronounced effect. In contrast, Rip and KD025 modulated physical stiffness differently, in that Rip caused a substantial decrease and KD025 caused an increase. Such diverse effects between Rip and KD025 were also observed for the gene expressions of ECM proteins, their regulators, and ER-stress related factors. The findings presented herein suggest that the ROCK1 and 2 influence the spatial architecture of 3D HCFS spheroids in different manners.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2045-2322
Relation: https://doaj.org/toc/2045-2322
DOI: 10.1038/s41598-022-11407-1
URL الوصول: https://doaj.org/article/bbbcf84cb01943108006513b6eb48188
رقم الأكسشن: edsdoj.bbbcf84cb01943108006513b6eb48188
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20452322
DOI:10.1038/s41598-022-11407-1