دورية أكاديمية

Integrated Analysis of Metabolome and Transcriptome Revealed Different Regulatory Networks of Metabolic Flux in Tea Plants [Camellia sinensis (L.) O. Kuntze] with Varied Leaf Colors

التفاصيل البيبلوغرافية
العنوان: Integrated Analysis of Metabolome and Transcriptome Revealed Different Regulatory Networks of Metabolic Flux in Tea Plants [Camellia sinensis (L.) O. Kuntze] with Varied Leaf Colors
المؤلفون: Yazhen Zhang, Liyuan Wang, Xiangrui Kong, Zhihui Chen, Sitong Zhong, Xinlei Li, Ruiyang Shan, Xiaomei You, Kang Wei, Changsong Chen
المصدر: International Journal of Molecular Sciences, Vol 25, Iss 1, p 242 (2023)
بيانات النشر: MDPI AG, 2023.
سنة النشر: 2023
المجموعة: LCC:Biology (General)
LCC:Chemistry
مصطلحات موضوعية: Camellia sinensis, leaf color, metabolome, transcriptome, lipid, flavonoid, Biology (General), QH301-705.5, Chemistry, QD1-999
الوصف: Leaf color variations in tea plants were widely considered due to their attractive phenotypes and characteristic flavors. The molecular mechanism of color formation was extensively investigated. But few studies focused on the transformation process of leaf color change. In this study, four strains of ‘Baijiguan’ F1 half-sib generation with similar genetic backgrounds but different colors were used as materials, including Green (G), Yellow-Green (Y-G), Yellow (Y), and Yellow-Red (Y-R). The results of broadly targeted metabolomics showed that 47 metabolites were differentially accumulated in etiolated leaves (Y-G, Y, and Y-R) as compared with G. Among them, lipids were the main downregulated primary metabolites in etiolated leaves, which were closely linked with the thylakoid membrane and chloroplast structure. Flavones and flavonols were the dominant upregulated secondary metabolites in etiolated leaves, which might be a repair strategy for reducing the negative effects of dysfunctional chloroplasts. Further integrated analysis with the transcriptome indicated different variation mechanisms of leaf phenotype in Y-G, Y, and Y-R. The leaf color formation of Y-G and Y was largely determined by the increased content of eriodictyol-7-O-neohesperidoside and the enhanced activities of its modification process, while the color formation of Y-R depended on the increased contents of apigenin derivates and the vigorous processes of their transportation and transcription factor regulation. The key candidate genes, including UDPG, HCT, CsGSTF1, AN1/CsMYB75, and bHLH62, might play important roles in the flavonoid pathway.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1422-0067
1661-6596
Relation: https://www.mdpi.com/1422-0067/25/1/242; https://doaj.org/toc/1661-6596; https://doaj.org/toc/1422-0067
DOI: 10.3390/ijms25010242
URL الوصول: https://doaj.org/article/bf901781e88e460b86ca1b0a3564538f
رقم الأكسشن: edsdoj.bf901781e88e460b86ca1b0a3564538f
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:14220067
16616596
DOI:10.3390/ijms25010242