دورية أكاديمية

Analysis of Spectral Separability for Detecting Burned Areas Using Landsat-8 OLI/TIRS Images under Different Biomes in Brazil and Portugal

التفاصيل البيبلوغرافية
العنوان: Analysis of Spectral Separability for Detecting Burned Areas Using Landsat-8 OLI/TIRS Images under Different Biomes in Brazil and Portugal
المؤلفون: Admilson da Penha Pacheco, Juarez Antonio da Silva Junior, Antonio Miguel Ruiz-Armenteros, Renato Filipe Faria Henriques, Ivaneide de Oliveira Santos
المصدر: Forests, Vol 14, Iss 4, p 663 (2023)
بيانات النشر: MDPI AG, 2023.
سنة النشر: 2023
المجموعة: LCC:Plant ecology
مصطلحات موضوعية: forest fires, Landsat-8, spectral indices, spectral separability, Plant ecology, QK900-989
الوصف: Fire is one of the natural agents with the greatest impact on the terrestrial ecosystem and plays an important ecological role in a large part of the terrestrial surface. Remote sensing is an important technique applied in mapping and monitoring changes in forest landscapes affected by fires. This study presents a spectral separability analysis for the detection of burned areas using Landsat-8 OLI/TIRS images in the context of fires that occurred in different biomes of Brazil (dry ecosystem) and Portugal (temperate forest). The research is based on a fusion of spectral indices and automatic classification algorithms scientifically proven to be effective with as little human interaction as possible. The separability index (M) and the Reed–Xiaoli automatic anomaly detection classifier (RXD) allowed the evaluation of the spectral separability and the thematic accuracy of the burned areas for the different spectral indices tested (Burn Area Index (BAI), Normalized Burn Ratio (NBR), Mid-Infrared Burn Index (MIRBI), Normalized Burn Ratio 2 (NBR2), Normalized Burned Index (NBI), and Normalized Burn Ratio Thermal (NBRT)). The analysis parameters were based on spatial dispersion with validation data, commission error (CE), omission error (OE), and the Sørensen–Dice coefficient (DC). The results indicated that the indices based exclusively on the SWIR1 and SWIR2 bands showed a high degree of separability and were more suitable for detecting burned areas, although it was observed that the characteristics of the soil affected the performance of the indices. The classification method based on bitemporal anomalous changes using the RXD anomaly proved to be effective in increasing the burned area in terms of temporal alteration and performing unsupervised detection without relying on the ground truth. On the other hand, the main limitations of RXD were observed in non-abrupt changes, which is very common in fires with low spectral signal, especially in the context of using Landsat-8 images with a 16-day revisit period. The results obtained in this work were able to provide critical information for fire mapping algorithms and for an accurate post-fire spatial estimation in dry ecosystems and temperate forests. The study presents a new comparative approach to classify burned areas in dry ecosystems and temperate forests with the least possible human interference, thus helping investigations when there is little available data on fires in addition to favoring a reduction in fieldwork and gross errors in the classification of burned areas.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1999-4907
Relation: https://www.mdpi.com/1999-4907/14/4/663; https://doaj.org/toc/1999-4907
DOI: 10.3390/f14040663
URL الوصول: https://doaj.org/article/f60b36096b164679b462d396966e1094
رقم الأكسشن: edsdoj.f60b36096b164679b462d396966e1094
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:19994907
DOI:10.3390/f14040663