دورية أكاديمية

Mechanical behaviors of deep pillar sandwiched between strong and weak layers

التفاصيل البيبلوغرافية
العنوان: Mechanical behaviors of deep pillar sandwiched between strong and weak layers
المؤلفون: Sahendra Ram, Petr Waclawik, Jan Nemcik, Radovan Kukutsch, Ashok Kumar, Arun Kumar Singh, Libin Gong
المصدر: Journal of Rock Mechanics and Geotechnical Engineering, Vol 15, Iss 5, Pp 1111-1126 (2023)
بيانات النشر: Elsevier, 2023.
سنة النشر: 2023
المجموعة: LCC:Engineering geology. Rock mechanics. Soil mechanics. Underground construction
مصطلحات موضوعية: Pillar yielding mechanisms, Great depth, Numerical modeling, Induced stress, Pillar dilation, Slippery slickenside layer, Engineering geology. Rock mechanics. Soil mechanics. Underground construction, TA703-712
الوصف: A variety of coal room and pillar mining methods have been efficiently practiced at depths of up to 500 m with least strata mechanics issues. However, for the first time, this method was trialled at depths of 850–900 m in CSM mine of Czech Republic. The rhomboid-shaped coal pillars with acute corners of 70°, surrounded with 5.2 m wide and 3.5–4.5 m high mine roadways, were used. Pillars were developed in a staggered manner with their size variation in the Panel II from 83 m × 25 m to 24 m × 20 m (corner to corner) and Panel V from 35 m × 30 m to 26 m × 16 m. Coal seam inclined at 12° was affected by the unusual slippery slickenside roof bands and sometimes in the floor levels with high vertical stress below strong and massive sandstone roof. In order to ensure safety, pillars in both the panels were continuously monitored using various geotechnical instruments measuring the induced stresses, side spalling and roof sagging. Both panels suffered high amounts of mining induced stress and pillar failure with side-spalling up to 5 m from all sides. Heavy fracturing of coal pillar sides was controlled by fully encapsulated steel bolts. Mining induced stress kept increasing with the progress of development of pillars and galleries. Instruments installed in the pillar failed to monitor actual induced stress due to fracturing of coal mass around it which created an apprehension of pillar failure up to its core due to high vertical mining induced stress. This risk was reduced by carrying out scientific studies including the three-dimensional numerical models calibrated with data from the instrumented pillar. An attempt has been made to study the behavior of coal pillars and their yielding characteristics at deeper cover based on field and simulation results.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1674-7755
Relation: http://www.sciencedirect.com/science/article/pii/S1674775522002311; https://doaj.org/toc/1674-7755
DOI: 10.1016/j.jrmge.2022.11.006
URL الوصول: https://doaj.org/article/fb58d7bb55174818a1547a39f2766640
رقم الأكسشن: edsdoj.fb58d7bb55174818a1547a39f2766640
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:16747755
DOI:10.1016/j.jrmge.2022.11.006