دورية أكاديمية

A New Factor LapD Is Required for the Regulation of LpxC Amounts and Lipopolysaccharide Trafficking

التفاصيل البيبلوغرافية
العنوان: A New Factor LapD Is Required for the Regulation of LpxC Amounts and Lipopolysaccharide Trafficking
المؤلفون: Alicja Wieczorek, Anna Sendobra, Akshey Maniyeri, Magdalena Sugalska, Gracjana Klein, Satish Raina
المصدر: International Journal of Molecular Sciences, Vol 23, Iss 17, p 9706 (2022)
بيانات النشر: MDPI AG, 2022.
سنة النشر: 2022
المجموعة: LCC:Biology (General)
LCC:Chemistry
مصطلحات موضوعية: lipopolysaccharide, LpxC, cardiolipin synthase A, LPS assembly proteins LapB, LapC (YejM) and LapD, acyltransferases LpxL and LpxM, heptosyltransferase I WaaC, Biology (General), QH301-705.5, Chemistry, QD1-999
الوصف: Lipopolysaccharide (LPS) constitutes the major component of the outer membrane and is essential for bacteria, such as Escherichia coli. Recent work has revealed the essential roles of LapB and LapC proteins in regulating LPS amounts; although, if any additional partners are involved is unknown. Examination of proteins co-purifying with LapB identified LapD as a new partner. The purification of LapD reveals that it forms a complex with several proteins involved in LPS and phospholipid biosynthesis, including FtsH-LapA/B and Fab enzymes. Loss of LapD causes a reduction in LpxC amounts and vancomycin sensitivity, which can be restored by mutations that stabilize LpxC (mutations in lapB, ftsH and lpxC genes), revealing that LapD acts upstream of LapB-FtsH in regulating LpxC amounts. Interestingly, LapD absence results in the substantial retention of LPS in the inner membranes and synthetic lethality when either the lauroyl or the myristoyl acyl transferase is absent, which can be overcome by single-amino acid suppressor mutations in LPS flippase MsbA, suggesting LPS translocation defects in ΔlapD bacteria. Several genes whose products are involved in cell envelope homeostasis, including clsA, waaC, tig and micA, become essential in LapD’s absence. Furthermore, the overproduction of acyl carrier protein AcpP or transcriptional factors DksA, SrrA can overcome certain defects of the LapD-lacking strain.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1422-0067
1661-6596
Relation: https://www.mdpi.com/1422-0067/23/17/9706; https://doaj.org/toc/1661-6596; https://doaj.org/toc/1422-0067
DOI: 10.3390/ijms23179706
URL الوصول: https://doaj.org/article/fd1934531e824e128a50e13f32292974
رقم الأكسشن: edsdoj.fd1934531e824e128a50e13f32292974
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:14220067
16616596
DOI:10.3390/ijms23179706