دورية أكاديمية

Aβ/Amyloid Precursor Protein-Induced Hyperexcitability and Dysregulation of Homeostatic Synaptic Plasticity in Neuron Models of Alzheimer’s Disease

التفاصيل البيبلوغرافية
العنوان: Aβ/Amyloid Precursor Protein-Induced Hyperexcitability and Dysregulation of Homeostatic Synaptic Plasticity in Neuron Models of Alzheimer’s Disease
المؤلفون: Isak Martinsson, Luis Quintino, Megg G. Garcia, Sabine C. Konings, Laura Torres-Garcia, Alexander Svanbergsson, Oliver Stange, Rebecca England, Tomas Deierborg, Jia-Yi Li, Cecilia Lundberg, Gunnar K. Gouras
المصدر: Frontiers in Aging Neuroscience, Vol 14 (2022)
بيانات النشر: Frontiers Media S.A., 2022.
سنة النشر: 2022
المجموعة: LCC:Neurosciences. Biological psychiatry. Neuropsychiatry
مصطلحات موضوعية: amyloid, APP – amyloid precursor protein, synapse, calcium imaging, homeostatic synaptic plasticity (HSP), neuron, Neurosciences. Biological psychiatry. Neuropsychiatry, RC321-571
الوصف: Alzheimer’s disease (AD) is increasingly seen as a disease of synapses and diverse evidence has implicated the amyloid-β peptide (Aβ) in synapse damage. The molecular and cellular mechanism(s) by which Aβ and/or its precursor protein, the amyloid precursor protein (APP) can affect synapses remains unclear. Interestingly, early hyperexcitability has been described in human AD and mouse models of AD, which precedes later hypoactivity. Here we show that neurons in culture with either elevated levels of Aβ or with human APP mutated to prevent Aβ generation can both induce hyperactivity as detected by elevated calcium transient frequency and amplitude. Since homeostatic synaptic plasticity (HSP) mechanisms normally maintain a setpoint of activity, we examined whether HSP was altered in AD transgenic neurons. Using methods known to induce HSP, we demonstrate that APP protein levels are regulated by chronic modulation of activity and that AD transgenic neurons have an impaired adaptation of calcium transients to global changes in activity. Further, AD transgenic compared to WT neurons failed to adjust the length of their axon initial segments (AIS), an adaptation known to alter excitability. Thus, we show that both APP and Aβ influence neuronal activity and that mechanisms of HSP are disrupted in primary neuron models of AD.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1663-4365
Relation: https://www.frontiersin.org/articles/10.3389/fnagi.2022.946297/full; https://doaj.org/toc/1663-4365
DOI: 10.3389/fnagi.2022.946297
URL الوصول: https://doaj.org/article/ff57882822e84937998f1dfb99ae5e93
رقم الأكسشن: edsdoj.ff57882822e84937998f1dfb99ae5e93
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:16634365
DOI:10.3389/fnagi.2022.946297