مورد إلكتروني

Engineering death resistance in CHO cells for improved perfusion culture

التفاصيل البيبلوغرافية
العنوان: Engineering death resistance in CHO cells for improved perfusion culture
المصدر: MacDonald , M A , Nöbel , M , Martínez , V S , Baker , K , Shave , E , Gray , P P , Mahler , S , Munro , T , Nielsen , L K & Marcellin , E 2022 , ' Engineering death resistance in CHO cells for improved perfusion culture ' , mAbs , vol. 14 , no. 1 , 2083465 .
بيانات النشر: 2022
تفاصيل مُضافة: MacDonald, Michael A.
Nöbel, Matthias
Martínez, Verónica S.
Baker, Kym
Shave, Evan
Gray, Peter P.
Mahler, Stephen
Munro, Trent
Nielsen, Lars K.
Marcellin, Esteban
نوع الوثيقة: Electronic Resource
مستخلص: The reliable and cost-efficient manufacturing of monoclonal antibodies (mAbs) is essential to fulfil their ever-growing demand. Cell death in bioreactors reduces productivity and product quality, and is largely attributed to apoptosis. In perfusion bioreactors, this leads to the necessity of a bleed stream, which negatively affects the overall process economy. To combat this limitation, death-resistant Chinese hamster ovary cell lines were developed by simultaneously knocking out the apoptosis effector proteins Bak1, Bax, and Bok with CRISPR technology. These cell lines were cultured in fed-batch and perfusion bioreactors and compared to an unmodified control cell line. In fed-batch, the death-resistant cell lines showed higher cell densities and longer culture durations, lasting nearly a month under standard culture conditions. In perfusion, the death-resistant cell lines showed slower drops in viability and displayed an arrest in cell division after which cell size increased instead. Pertinently, the death-resistant cell lines demonstrated the ability to be cultured for several weeks without bleed, and achieved similar volumetric productivities at lower cell densities than that of the control cell line. Perfusion culture reduced fragmentation of the mAb produced, and the death-resistant cell lines showed increased glycosylation in the light chain in both bioreactor modes. These data demonstrate that rationally engineered death-resistant cell lines are ideal for mAb production in perfusion culture, negating the need to bleed the bioreactor whilst maintaining product quantity and quality.
مصطلحات الفهرس: Apoptosis, Biopharmaceutical manufacturing, Bioprocessing, Cell line development, Genetic engineering, mAb glycosylation, mAb manufacturing, Monoclonal antibody manufacturing, Perfusion, article
URL: https://orbit.dtu.dk/en/publications/ce202b32-0a67-4570-a87a-ab0849f12696
https://doi.org/10.1080/19420862.2022.2083465
https://backend.orbit.dtu.dk/ws/files/298173466/Engineering_death_resistance_in_CHO_cells_for_improved_perfusion_culture.pdf
الإتاحة: Open access content. Open access content
info:eu-repo/semantics/openAccess
ملاحظة: application/pdf
English
أرقام أخرى: EDN oai:pure.atira.dk:publications/ce202b32-0a67-4570-a87a-ab0849f12696
1372617384
المصدر المساهم: TECHNICAL KNOWLEDGE CTR DENMARK
From OAIster®, provided by the OCLC Cooperative.
رقم الأكسشن: edsoai.on1372617384
قاعدة البيانات: OAIster