Upscaling the interplay between diffusion and polynomial drifts through  a composite thin strip with periodic microstructure

التفاصيل البيبلوغرافية
العنوان: Upscaling the interplay between diffusion and polynomial drifts through  a composite thin strip with periodic microstructure
المؤلفون: Cirillo, E. N. M., de Bonis, I., Muntean, Adrian, 1974, Richardson, Omar
المصدر: Meccanica (Milano. Print). 55(11):2159-2179
مصطلحات موضوعية: Diffusion, Polynomial drifts, Upscaling, Dimension reduction, Derivation of nonlinear transmission boundary conditions, Concentration localization, Matematik, Mathematics
الوصف: We study the upscaling of a system of many interacting particles through a heterogenous thin elongated obstacle as modeled via a two-dimensional diffusion problem with a one-directional nonlinear convective drift. Assuming that the obstacle can be described well by a thin composite strip with periodically placed microstructures, we aim at deriving the upscaled model equations as well as the effective transport coefficients for suitable scalings in terms of both the inherent thickness at the strip and the typical length scales of the microscopic heterogeneities. Aiming at computable scenarios, we consider that the heterogeneity of the strip is made of an array of periodically arranged impenetrable solid rectangles and identify two scaling regimes what concerns the small asymptotics parameter for the upscaling procedure: the characteristic size of the microstructure is either significantly smaller than the thickness of the thin obstacle or it is of the same order of magnitude. We scale up the diffusion-polynomial drift model and list computable formulas for the effective diffusion and drift tensorial coefficients for both scaling regimes. Our upscaling procedure combines ideas of two-scale asymptotics homogenization with dimension reduction arguments. Consequences of these results for the construction of more general transmission boundary conditions are discussed. We illustrate numerically the concentration profile of the chemical species passing through the upscaled strip in the finite thickness regime and point out that trapping of concentration inside the strip is likely to occur in at least two conceptually different transport situations: (i) full diffusion/dispersion matrix and nonlinear horizontal drift, and (ii) diagonal diffusion matrix and oblique nonlinear drift.
وصف الملف: electronic
URL الوصول: https://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-80331
https://doi.org/10.1007/s11012-020-01253-8
https://kau.diva-portal.org/smash/get/diva2:1470080/FULLTEXT02.pdf
قاعدة البيانات: SwePub
الوصف
تدمد:00256455
DOI:10.1007/s11012-020-01253-8