Reduced somatostatin signalling leads to hypersecretion of glucagon in mice fed a high-fat diet

التفاصيل البيبلوغرافية
العنوان: Reduced somatostatin signalling leads to hypersecretion of glucagon in mice fed a high-fat diet
المؤلفون: Kellard, J. A., Rorsman, N. J. G., Hill, T. G., Armour, S. L., van de Bunt, M., Rorsman, Patrik, 1959, Knudsen, J. G., Briant, L. J. B.
المصدر: Molecular Metabolism. 40
مصطلحات موضوعية: Endocrinology and Diabetes, Endokrinologi och diabetes, Diabetes, High fat diet, Islet of Langerhans, Alpha cell, Insulin, tolerance, Hyperglucagonemia, Paracrine, Calcium, Somatostatin, Delta, cell, k-atp channels, pancreatic alpha, delta-cells, beta-cells, immunoreactive somatostatin, potassium channels, insulin-secretion, inhibits insulin, glucose control, islets, Endocrinology & Metabolism
الوصف: Objectives: Elevated plasma glucagon is an early symptom of diabetes, occurring in subjects with impaired glucose regulation. Here, we explored alpha-cell function in female mice fed a high-fat diet (HFD). Methods: Female mice expressing the Ca2+ indicator GCaMP3 specifically in alpha-cells were fed a high-fat or control (CTL) diet. We then conducted in vivo phenotyping of these mice, as well as experiments on isolated (ex vivo) islets and in the in situ perfused pancreas. Results: In HFD-fed mice, fed plasma glucagon levels were increased and glucagon secretion from isolated islets and in the perfused mouse pancreas was also elevated. In mice fed a CTL diet, increasing glucose reduced intracellular Ca2+ ([Ca2+](i)) oscillation frequency and amplitude. This effect was also observed in HFD mice; however, both the frequency and amplitude of the [Ca2+](i) oscillations were higher than those in CTL alpha-cells. Given that alpha-cells are under strong paracrine control from neighbouring somatostatin-secreting delta-cells, we hypothesised that this elevation of alpha-cell output was due to a lack of somatostatin (SST) secretion. Indeed, SST secretion in isolated islets from HFD-fed mice was reduced but exogenous SST also failed to suppress glucagon secretion and [Ca2+](i) activity from HFD alpha-cells, in contrast to observations in CTL mice. Conclusions: These findings suggest that reduced delta-cell function, combined with intrinsic changes in alpha-cells including sensitivity to somatostatin, accounts for the hyperglucagonaemia in mice fed a HFD. (C) 2020 The Author(s). Published by Elsevier GmbH.
URL الوصول: https://gup.ub.gu.se/publication/297248
قاعدة البيانات: SwePub
الوصف
تدمد:22128778
DOI:10.1016/j.molmet.2020.101021